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ABSTRACT

We obtain strong restrictions on the structure of a Sylow 2-subgroup of

a group with at most three real valued irreducible characters. This ex-

tends results of Iwasaki, who studied groups with at most two real valued

irreducible characters.

1. Introduction

S. Iwasaki [3] proposed to study the structure of a finite group G according to

its number of real valued irreducible characters. Being groups of odd order the

groups with exactly one irreducible real character, in [3] he characterized the

finite groups with two real valued characters. In particular, he proved that they

have a normal Sylow 2-subgroup that is either homocyclic or a Suzuki 2-group

of type A (see Definition VIII.7.1 of [1] for a definition). The goal of this note

is to extend these results to groups with at most three real valued characters.

Theorem A: Let G be a finite group with at most three irreducible real valued

characters. Then G has a cyclic Sylow 2-subgroup or a normal Sylow 2-subgroup
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which is homocyclic, quaternion of order 8 or an iterated central extension of a

Suzuki 2-group whose center is an elementary abelian 2-group.

In other words, we cannot get the same situation as in Iwasaki’s theorem, but

we show that the structure of our groups is pretty similar. Now it is not possible

to assure that G has a normal Sylow 2-subgroup, as the symmetric group S3

shows. Also, we cannot rule out the quaternion group of order 8 as a possible

Sylow 2-subgroup, as SL(2, 3) shows. In Section 3 we will also give examples

that show that there are groups with 3 real valued irreducible characters whose

Sylow 2-subgroup is a Suzuki group which is not of type A and also groups

whose Sylow 2-subgroup is a central extension of a Suzuki 2-group.

It is worth mentioning that if we allow 4 real valued characters then the group

G does not need to be solvable any more: the group PSL(2, 7) is a nonsolvable

group with exactly 4 real valued characters.

We thank E. O’Brien and the referee for helpful comments.

2. Proof of Theorem A

We begin by stating several recent results on real and rational valued characters

that we will use. Recall that o(θ) is the determinantal order of the character θ.

In general, we use the notation in [2].

Lemma 2.1: Let N be a normal subgroup of a group G and let θ ∈ Irr(N)

be G-invariant, real of odd degree. Suppose that o(θ) = 1. Then θ has a real

extension to G.

Proof. See Theorem 2.3 of [5]

Lemma 2.2: Let S be a nonabelian simple group. Then S has at least 4 real

elements of pairwise different orders.

Proof. This follows from Theorem 3.1 of [4], for instance.

The proof of this result relies on the classification of finite simple groups. We

will, however, apply it only to simple groups S with just one orbit of involutions

under the action of Aut(S), so this is the only part of the classification of simple

groups that we will be using.

Recall that an element x ∈ G is real if x and x−1 are G-conjugate. By

Brauer’s lemma on character tables (Theorem 6.32 of [2]), we know that the
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number of irreducible real characters of G is the number of conjugacy classes of

G consisting of real elements.

We need the following elementary but useful lemma.

Lemma 2.3: Let G be a group with three real valued irreducible characters.

Then G has at most two conjugacy classes of involutions. Furthermore, if G

has two conjugacy classes of involutions then, together with the identity, they

form a normal subgroup of G.

Proof. First, we note that any class of involutions is a real conjugacy class.

Also, the class of the identity is a real conjugacy class. Hence, the first part of

the lemma easily follows.

Now assume that G has two conjugacy classes of involutions K1 and K2. Let

x, y ∈ G be two involutions. Then

(xy)y = yx = (xy)−1 ,

so xy belongs to a real class. But we know that all the real elements belong to

{1} ∪ K1 ∪ K2. We have proved that this subset of G is a subgroup and the

lemma follows

Observe also that this normal subgroup is an elementary abelian 2-group.

Finally, we need the following elementary result.

Lemma 2.4: Assume that a group X of an odd order acts on an elementary

abelian 2-group V . Then the number of orbits of X on V is even. In particular,

X cannot act on V with two orbits of nonidentity elements.

Proof. It suffices to observe that any orbit of X on V has odd size and that |V |

is even.

In the next result we already find strong restrictions for the structure of

groups with at most three real valued characters.

Theorem 2.5: Let G be a group with at most three real valued irreducible

characters. Then G is a solvable group of 2-length one whose Sylow 2-subgroup

is homocyclic, quaternion of order 8 or an iterated central extension of a Suzuki

2-group whose center is an elementary abelian 2-group.

Proof. We start by proving that a group G with at most three real valued ir-

reducible characters is solvable. We argue by induction on |G|. If N is any
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minimal normal subgroup of G, then G/N is solvable by the inductive hypoth-

esis. Thus we may assume that N a direct product of copies of a nonabelian

simple group. If G has one or two real irreducible characters, we already know

that G is solvable. So we may assume that G has exactly three real valued

irreducible characters. Now, it follows from Lemma 2.3 that G has exactly

one conjugacy class of involutions. This implies that N is a nonabelian simple

group. Since Z(N) = 1, we deduce that CG(N) = 1, again by applying induc-

tion in the group G/CG(N). Thus G is an almost simple group with exactly one

conjugacy class of involutions. It follows from Lemma 2.2 that G has at least 4

real conjugacy classes and by Brauer’s lemma on character tables, 4 irreducible

real valued characters. This proves that G is solvable.

Next, we prove that the 2-length of G is at most one. (That is to say: we

prove that G has an odd order normal subgroup R such that G/R has a normal

Sylow 2-subgroup.) We argue by induction on |G|. We certainly may assume

that O2′(G) = 1. Now, let N be a minimal normal subgroup of G, which

is an elementary abelian 2-group. By the inductive hypothesis, G/N has two

length at most one. Let L and M be the normal subgroups of G such that

L/N = O2
′

(G/N) and M/N = O2(L/N). Now we have that M/N is a 2’-

group and we claim that we may assume that O2(M) = M . Otherwise, since

N is a minimal normal subgroup of G, we would have that O2(M) is a 2’-group

and M = O2(M) × N . But since O2′ (G) = 1, this implies that M = N and G

has 2-length one.

Now take λ ∈ Irr(N) nonprincipal and let T be the inertia group of λ in

M . Since M/N is a 2’-group, there exists a canonical extension λ̂ of λ to T

(see Corollary 8.16 of [2]). In particular, λ̂ is real valued by the uniqueness of

canonical extensions. Now θ = λ̂M ∈ Irr(M) is a real valued character of odd

degree. Recall that for a real valued character θ, o(θ) ≤ 2. (See [5].) Since

O2(M) = M , we have that o(θ) = 1. Now, we can apply Lemma 2.1 to deduce

that θ has a real valued extension θ̃ to its inertia group in G. Now θ̃G ∈ Irr(G)

is a real valued character. We deduce that G/N has at most two real valued

characters. If G/N has odd order, then G has a normal Sylow 2-subgroup and

we are done. Otherwise, G/N has exactly two irreducible real valued characters

and by Iwasaki’s theorem, we have that G/N has a normal Sylow 2-subgroup.

Thus G has a normal Sylow 2-subgroup, as desired.

Finally, we want to prove that the Sylow 2-subgroup of G is homocyclic,

quaternion of order 8, or an iterated central extension of a Suzuki 2-group
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whose center is an elementary abelian 2-group. As before, we may assume that

O2′(G) = 1, so that G has a normal Sylow 2-subgroup P . Also, we may assume

that G has exactly three real valued irreducible characters by Iwasaki’s theorem.

Now, let X be a Hall 2-complement of G. Assume first that the Sylow 2-

subgroup P of G has exactly one involution. Then it is cyclic or generalized

quaternion. If it is a generalized quaternion group of order bigger than 8, then

it does not have any nontrivial odd order automorphism, and we deduce that

G is a quaternion group. But then it has at least 4 rational characters. This

contradiction means that if P is generalized quaternion, then it has order 8.

Now we may assume that P has more than one involution. If G has exactly

one class of involutions then the result follows from a deep theorem of Thompson

(see Theorem IX.8.6 of [1]). Hence, by Lemma 2.3 we may assume that G has

exactly two conjugacy classes of involutions and that together with the identity,

they form a normal subgroup V of G. Assume first that V is central in P . Then

a Hall 2-complement of G acts on V with two orbits of nonidentity elements.

This contradicts Lemma 2.4.

Let W = V ∩ Z(P ). We deduce that 1 < W < V is a normal subgroup of

G. By induction, the Sylow 2-subgroup P/W of G/W is quaternion of order 8,

homocyclic or an iterated central extension of a Suzuki 2-group whose center is

an elementary abelian 2-group.

Assume first that P/W is an iterated central extension of a Suzuki 2-group

whose center Z/W is an elementary abelian 2-group. The group G/W has

at most two conjugacy classes of involutions, and we deduce that the Hall

2-complement of G/W acts on Z/W with only one nontrivial orbit. Since

Z ∩V > W , we deduce that Z = V . It is also clear that if P/W is a quaternion

group, then Z(P/W ) = V/W .

In both cases we have that Z(P ) ≤ V so that Z(P ) = W . Now if P/W is an

iterated central extension of a Suzuki 2-group, then the same happens with P .

It is well-known that the quaternion group of order 8 is not capable, so P/W

cannot be isomorphic to Q8.

Assume now that P/W is homocyclic. Remember also that V/W = Ω1(P/W )

(the number of conjugacy classes of involutions of G/W cannot be bigger than

one by the previous lemma and our hypothesis) and Ω1(P ) = V is an elementary

abelian 2-group. Observe also that P ′ ≤ W = V ∩ Z(P ).
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Then for any element x in P − W there exists some power of x in V − W .

It follows that x does not belong to the center of P , so again Z(P ) = W . In

particular, P has class 2.

If P/W is elementary abelian, then P = V and Z(P ) = V > W . This

is a contradiction. Hence, there exists x ∈ P such that x2 ∈ V − W . Now,

[x2, y] = [x, y]2 = 1 for every y ∈ G. (The second equality follows from the fact

that P ′ ≤ W .) This shows that x2 ∈ Z(P ) = W . This contradiction shows

that P/W cannot be homocyclic.

Finally, the next result completes the proof of Theorem A.

Theorem 2.6: Suppose that G is a finite group with exactly three real valued

irreducible characters. Let P ∈ Syl2(G). Then P is cyclic or normal in G.

Proof. We argue by induction on |G|. We already know that G is solvable with

2-length 1. In particular, we may assume that O2′(G) > 1. Let V be a minimal

normal subgroup of G of odd order. Either by induction or by the two real

characters case, we have that PV ⊳ G. If [P, V ] = 1, then P ⊳ G, and we are

done. Thus CP (V ) < P . Let tCP (V ) ∈ P/CP (V ) of order 2, and let v ∈ V such

that 1 6= v−1vt = w. Then w is inverted by t, and the class of w is real. Hence,

the unique non-trivial real classes of G are the class of involutions and the class

of w. Suppose that N = O2(G) > 1. Hence N ⊆ P and thus N ∩ Z(P ) > 1.

Let s ∈ N ∩ Z(P ) of order 2. Then

(sw)t = sw−1 = w−1s = (sw)−1

and this is impossible.

Now, if x ∈ P is an involution, we have that

V = [V, x] × CV (x)

and x inverts [V, x] > 1. Hence, G has odd order real elements, and hence, the

real classes are this class of odd real elements, the (unique) class of involutions

of G and the identity.

Since x inverts some element in V , there exists λ ∈ Irr(V ) such that λx = λ.

Let T be the inertia subgroup of λ in PV and θ the canonical extension of λ to

T . By uniqueness, θx = θ. Hence

η = θPV = (θx)PV = θ
PV

= θPV
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is a real valued irreducible character of PV . By Corollary 2.2 of [5], we conclude

that G has an irreducible real character not having V in its kernel. Thus G/V

has exactly two real characters. Hence P is homocyclic or Suzuki. Also, if

K/V is the set of elements of G/V with x2 = 1, then K/V is a normal abelian

subgroup of G/V . Also, K = IV , where I = Ω1(Z(P )).

Now, G/V acts on V . Among all involutions x in I we choose x such that

[V, x] is as large as possible. Write V = W × CV (x), where W = [V, x] is

inverted by x. Now, let y ∈ I be any other involution of G. Hence xy = yx. In

particular, W is normalized by y. Suppose that 1 6= w ∈ W is centralized by y.

Then

(wy)x = w−1y = yw−1 = (wy)−1 ,

is a real element, and this is impossible. Hence CW (y) = 1. In particular,

W = [W, y] ⊆ [V, y]. We conclude that W = [V, x] = [V, y] for all y ∈ I.

Now, if g ∈ G, we have that xg = vz for some z ∈ I and v ∈ V . Hence

W g = [V, xg] = [V, vz] = [V, z] = [V, x] = W ,

and we conclude that W ⊳ G. Hence W = V and CV (x) = 1 and all elements

of V are inverted by any involution of G.

Suppose that x, y ∈ P are different involutions of P . Then xy 6= 1 is an

involution of G. If v ∈ V , then

v−1 = vxy = (vx)y = v

and this is a contradiction. Hence, P has a unique involution. Thus P is cyclic

or generalized quaternion. So it is cyclic.

3. Examples

As we have mentioned in the introduction, there are examples of groups with

three real valued characters whose Sylow 2-subgroup is a Suzuki group which is

not of type A. Let P be the Sylow 2-subgroup of PSU(3, 4). This is a Suzuki 2-

group of order 64 with P ′ = Z(P ) of order 4. This group has an automorphism

τ of order 15. Consider the semidirect product G = P 〈τ〉. Observe that 〈τ〉 acts

faithfully and transitively on the nontrivial elements of P/P ′ and transitively

on P ′−{1}. It is easy to see that the only real characters of G are the principal

character, λG, where λ is any linear character of P and θ̂G, where θ̂ is the
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canonical extension of any nonlinear character θ of P to a subgroup of G of

index 3.

Next, we construct an example of a group G with three real valued characters

whose Sylow 2-subgroup is a central extension of a Suzuki 2-group. The Suzuki

2-group of type A and size 26 has a central extension P of order 27 and exponent

4. This group has an automorphism τ of order 7 that acts transitively on both

the nontrivial elements of P/Z2(P ) and the nontrivial elements of Z2(P )/Z(P ).

Also, any character of P whose kernel does not contain Z(P ) has degree 8 (in

particular, there is a unique such character and hence it is rational valued) and,

of course, the nonlinear characters of P/Z(P ) have degree 2. Let G = P ⋊ 〈τ〉.

The group G/Z(P ) is one of the groups with two real valued characters that

Iwasaki considered. The group G has exactly one more real valued irreducible

character: the canonical extension of the irreducible character of P of degree 8.

Finally, we remark that we do not know whether or not it is possible to erase

the word “iterated” in the statement of Theorem A.
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